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Laser ray tracing and power deposition on an unstructured three-dimensional grid
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A scheme is presented for laser beam evolution and power deposition on three-dimensional unstructured
grids composed of hexahedra, prisms, pyramids, and tetrahedra. The geometrical-optics approximation to the
electromagnetic wave equation is used to follow propagation of a collection of discrete rays used to represent
the beanfs). Ray trajectory equations are integrated using a method that is second order in time, exact for a
constant electron-density gradient, and capable of dealing with density discontinuities that arise in certain
hydrodynamics formulations. Power deposition by inverse-bremsstrahlung is modeled with a scheme based on
Gaussian quadrature to accommodate a deposition rate whose spatial variation is highly nonuniform. Com-
parisons with analytic results are given for a density ramp in three dimensions, and a “quadratic-well” density
trough in two dimensions.

PACS numbsgfs): 02.70—c, 07.05.Tp, 02.60.Cb, 02.60.Lj

[. INTRODUCTION propagating medium was assumed, and two-dimensional
quadrilateral zones were triangulated to obtain material prop-

The most highly developed energy source used to driverties that varied linearly in the radial and axial coordinates
inertial-confinement fusiollCF) experiments today is laser within a zone and were continuous across zone interfaces.
light. The current generation of computer codes used td\zimuthal ray motion was discretized by assuming con-
model such experiments typically use three-dimensiona$tancy of the gradient of the index of refraction during a
(3D) unstructured grid§1—4] and may employ either finite- Propagation subume step, and iterative numerical root find-
element, finite-difference or hybrid representations to solvdng used to locate interface crossings.

Eulerian, Lagrangian or arbitrary-Lagrange-Eulét forms The present work makes no assumptions about symmetry
of the hydrodynamics equations. Moreover, when finite eleof the medium. The faces of the three-dimensional zones can
ments are used, they may be discontinudisThis level of be triangular or quadrilgteral_and h_ave arbitrary orientation_.
sophistication presents challenges to any scheme used Rfys traverse a zone in a single time step whose length is
model the interaction of laser beams with materials preserfietermined analytically, i.e., iteration is not necessary. Con-
in the simulation. stancy of the effective force governing ray motion within a

Part of the difficulty associated with three dimensionalityZone is assumed, but accuracy is controlled by grid resolu-
is the availability of sufficient computer power, which can betion rather than by restricting the time step. No requirement
addressed both by choice of hardware implementaiam- of continuity of material properties at zone interfaces is im-
allel architecture, for exampland by the choice of compu- Posed.
tation and approximation methods. The former will be dis- In Sec. Il the ray equation of motion is given. Inspection
cussed e|sewhere, the focus of the present work bein hows it to be that of a unit-mass particle in the pOtential
primarily algorithmic. Whatever the hardware choice, a re-fleld V=(c?/2)(n./n;) wherec is the speed of lightn, is
maining need for computational efficiency and the fact thathe free-electron number density, andthe critical density,
over most of the computational domain, and for most ICFat which the plasma frequency is equal to the laser fre-
applications of interest, the medium varies slowly over thequency. Thus, ray propagation is completely determined by
laser wavelength, leads one to choose geometrical optid§€ electron-density gradient. If the ratio of the zone size to
with absorption as an approximate solution of the full wavethe gradient scale length is adopted as a small pararagter
equation with damping. This captures most of the physicavariation of the electron density within a computational zone
effects of interest: refraction and power deposition and evefan be represented as
some ponderomotive effects. Diffractive effects are ne- _ . o
glected, but there is hope of extending the method to include Ne(X)={(ng)+{(Vneg)- (x—(x))+O(€?), (1)
them[5,6].

Given a ray-tracing approach, unstructured grids pose where() denotes a zone average. A natural approximation
problem by complicating the determination of where raysscheme for ray motion within a zone then emerges. In lowest
cross computational-zone interfaces, an issue for both ragrder, the density in a zone is constant at its average value.
propagation and power deposition. In some formulations offhe ray feels no effective force and therefore moves in a
hydrodynamics, for example, discontinuous-finite-elementsstraight line. In making the transition to the next zdndere
the matter density is discontinuous at zone interfaces, whickthe average density is, in general, diffepetiite ray experi-
leads to singularities in the effective force governing rayences as-function effective force normal to the zone inter-
propagation. Proper treatment of these singularities is crucidace, which discontinuously changes the component of its
to accurate modeling of refraction. velocity normal to the interface, i.e., the transition is gov-

In an earlier treatmenf?7] rotational symmetry of the erned by Snell's law. To next order the densisadientis
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constant within the zone, so the ray feels a constant force th@indamental equation of geometrical optid§,8|2= 7
causes it to move along a parabolic trajectory. The transitiojyhere 4 is the index of refraction, assumed to vary on a
to the next zone again obeys Snell's law. In lowest ordefmych longer spatial scale than the wavelength of the light.
refraction occurs only at zone interfaces, while at seconqu further assume thapy(i) is constant on the ray-transit
order a ray can refract within a zone as well. Extension totime scale, i.e., the medium is “frozen” during the time
higher order is straightforward but becomes computationally quired fo,r a ty’pical ray to traverse the grid, although it may

expensive ar_ld WOUId. be necessary on]y In Fhe presence %?lolve from one time step to the next. The spatially depen-
strongly varying density within a zone, in which case meShdent part of the phase, eikonal is related to the local wave

refinement would probably be more economictilthe ma- . >
terial properties were changing on the same scale as th&Ctork by k=(«/c)VS. Wave fronts, surfaces of constant

wavelength of light, geometrical optics would be expected tddhase, move at the phase velocity/|k|=c/|VS|, while
break down anyway. rays, which trace out curves that are everywhere normal to
In Sec. lll the general problem of determining the point of wave fronts, i.e., parallel t§ S, can be thought to progress
intersection of a ray with a zone face is considered. Thgt the group Ve|OCity,\7=8w/(?|2= cVS, the velocity at
equation of an arbitrary quadrilateral face is derived unde{yhich energy is transported. The equation of motion of a ray

the assumption that it be of bilinear form in the two- can pe obtained by differentiating the group velocity with
dimensional surface coordinates. The simpler case of a triansspect to timé7]:

gular face is also considered, and the inverse transformation
giving the surface coordinates in terms of Cartesian coordi- -

nates derived for both cases. Substitution of the ray trajec- d_X_ d_V_ dis_ > Sl EFey_ n2(Be B\

tory in the face equation determines the crossing time, and g _ dt © dt =cv-V)(VS=cAVS-V)(VS
substitution of the crossing time back into the face equation ) )

at the point of intersection. The unit vector normal to the _ C_V»(W»SF):V»(C_ 2) 3)
surface at the point of intersection, needed for application of 2 2 7

Snell's law, is obtained from the gradient of the function
whose level surface defines the face. Finally,
dependent of the face equation is given fo
whether or not a ray originating at the bea

a(;:rltterlo_n MThe index of refraction, or, equivalently for transparent ma-
r delermininge 55 the dielectric functiorep = 72, is a known function
M source pengg position for a given material. In a nonrelativistic unmag-

etrates a given boundary face. . . netized plasma, which for definiteness will be adopted as a
Given a model for the power-absorption rate, it can bemodel here, it is given by

integrated along the ray trajectory to determine the rate at
which energy is deposited in a zone. In Sec. IV this is done
for the inverse-bremsstrahlung process, a case in which a 2 wp Ne

strongly nonuniform absorption rate must be accommodated. n=l-—=1=0, 4
Knowledge of the total unattenuated ray-energy density in a

zone provides the energy density in the electromagnetic field, ) i

which gives the local laser field strength parameterVherewy is the plasmgl_frequenpy; is the laser frequency,
((VosclVe)?), required for transport coefficients and pondero-2ndne=(Me/4m)(w/€)” is the critical density, at which the
motive effects. laser frequency and plasma frequency are edliale quan-

A laser deposition package implementing this scheme haliés me and e are the electron mass and charge, respec-
been added to ICF modeling codes currently under develogively.) Combining Eq.(4) with Eq. (3) gives the final form
ment at Lawrence Livermore National Laboratd@—4].  ©f the ray equation of motion:

Test cases run with the codes to check the accuracy of ray

trajectories and power deposition are given in Sec. V, and in d2x ./ c2 Ne
Sec. VI results are discussed, and possible extensions of the —2=V( ) n_)' ®
method briefly mentioned. The geometry of nonplanar faces dt ¢
and computation of the laser-field energy density are treated
in two appendixes. Rays move as unit-mass particles in the potental
=(c?/2)ns/n;.
IIl. RAY EQUATIONS OF MOTION Hydrodynamics codes discretize the fundamental equa-

. _ o tions on meshes of points that define computational nodes
In the geometrical optics approximati¢@] electromag- and zones. Some quantities, typically even moments of the

netic wave quantities are written in the form underlying distribution function, are specified in the zones,
o R while others, typically the odd moments, are specified at
d=d(x,t)explio[S(x)/c—t]}, (2)  nodes. The electron density is not usually followed with an

evolution equation. Rather it is reconstructed when needed
with ¢ a slowly varying amplitude and the exponential phaseffom other quantities like the mass density, ionization state,
a large quantity. The quantities andc are, respectively, the Mass number, material fractions, etc. In additiodrg), we
light frequency and the speed of light in vacuum. Retentioralso requirg/Vn,) in each zond8] in order to integrate Eq.
of the dominant terms when the for(@) is substituted into  (5). To lowest ordefin the sense of Eq1)] the equation of

the wave equation,V2— (7/c)29%/dt2]¢=0, leads to the motion isd?x/dt?=0, so that the ray crosses the zone in a
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straight line. To next orden®x/dt?= — (c?/2)(Vne)/n,, re- _ ¥ 0. » 2050, pear iann
sulting in the parabolic trajectory characteristic of a constant
force field.

In the approximation1) the electron density is not, in
general, continuous across the interface separating two adje ,
cent computational zones. From E®) it is clear that this "
discontinuity appears in the ray equation of motion as a sin-
gularity in the component of the force normal to the inter-
face. Thus, in passing through the interface the component o
the ray velocity normal to the interface incurs a discontinu-
ous change, while the component tangent to the interface is
conserved, i.e., the ray refracts. To compute the effect of the FIG. 1. Trajectory of a raysolid white ling through a random-
instantaneous acceleration, letbe the distance measured ized three-dimensional mesh projected along with the front and rear
along the interface normal, and the associated component mesh points onto a plane perpendicular to yhexis. (Notice that
of the velocity. Then in this directioml/dt=v, d/ds by defi-  the projections of the front and rear faces of each zone are differ-
nition, so that the component of E() normal to the inter- ent) The average electron number density in a zone, which varied

VS
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face can be written from O on they axis to (3/2); on the linex=z=0.3, is indicated
by the gray scale. The critical surface is indicated with a dashed
J n n white line.
—(v2+ 2c?|=0=Avi=—A[ Zc?|, (6)
as N ne

sity in each computational zone. At this level of description

where A( .. .) represents the change across the interfacg@ys are sequences of connected straight-line segments punc-
Clearly, for a given value 0§ there is a maximum density tuated by discontinuous changes of direction at each zone
discontinuity consistent with transmission, vizAn, interface encountered. Although this extremely simple

S(vf/cz)nc. For larger discontinuities Eq6) cannot be scheme can be adequate for highly underdense plasmas,

satisfied for a transmitted ray. In that case the ray must reVnere refractive effects are small, it can be unacceptably

main in the initial zone and the only solution of E@) is  naccurate near critical surfaces, whemg~n.. Further-
An.=0. Then Avsz:wL—wvl i.e., the ray reflects more, there are certain geometric configurations in which it

Note that ray reflection occurs only for sufficiently large den—];alIIS _kiacil_y.l ng_r exatmplg, consgert a _cyllnd_r(ljcall_)t/hsg]mmetrlc
sity discontinuities, unlike the case for solutions of the full ensity field discretized on a L.artesian grid wi axis

electromagnetic wave equation, where some reflection WouIHqe axis of symmetry, and a ray tre_xvelmg lparallel to Xar .
take place for any nonvanishing density jump. y axis. Although th.e average .gradle.nt is in the r.ad|a}l direc-
Equation(6) is consistent with Snell's law, which may be tion, at each zone interface it is in either ther y direction,

seen by noting that the effective total energy associated witfS 'S therefore, the effective f(_)rce. Since rays refrac_t only at
motion governed by Eq(5) is conserved: Interfaces they never feel radial forces, and thus will never

undergo a transverse acceleration, and so will never refract

1 1n, 1 (although reflection is possibl¢10].
§v2+ > n—c2=§cz. (7) Retaining the average density gradient in the equation of
¢ motion overcomes this deficiency. The ray trajectory within
That is, a zone is second order in the time step, and, therefore, inher-

ently more accurate. Whereas the lowest order trajectory is
) el exact only in the uninteresting case of constant density, the
vi=|1- nl¢ ®) second-order trajectory is exact in a material with constant
electron-densitygradient which is a good local approxima-
as expectefrecall Eq.(4)]. Combination of Eqs(8) and(6)  tion given a sufficiently refined mesh. An example, discussed
verifies that the velocity component tangent to the interfacenore fully in Sec. VI, is seen in Fig. 1, where a ray is shown

is conserved, which can be expressed propagating across a constant density gradient. If the density
gradient is globally constant, there are no density disconti-

V1-ng/ngsind=+1-n//n.sing’, nuities at zone interfaces, so the trajectories are smooth, i.e.,
_ o continuous through first derivatives. The extent to which
or, with substitution from Eq(4), Vn, is not globally constant determines the size of density

discontinuities, which in turn determines the amount by
which rays must bend discontinuously at zone interfaces to

where unprimed(primed quantities denote values before compensate for the lack of resolution in the effective force.
(aften the transition, andd is the angle between the ray

velocity and the interface normal. Equati@®) is the usual IIl. INTERSECTION OF RAYS WITH ZONE FACES
statement of Snell’s law.

Equationg1), (3), and(9) in general, or Eqs1), (5), and
(6) when Eq.(4) holds, provide a prescription for propagat-  In order to determine the point at which a ray passes from
ing rays through an unstructured grid. In lowest order all thabne computational zone to another the equation of the inter-
is needed is the average dielectric function or electron derface as a surface in three dimensions is required. Defining a

nsinf=7n'sing’, 9

A. Equations of faces



898 THOMAS B. KAISER PRE 61

zone interface as a sur_face bounded by straight liedges 502()20_4_;1_,_;2_,_)23)/4,
that connect nodegrertices shared by two adjacent zones,
we consider the particular cases of four ed¢msadrilateral

S 01,02, 43
faces, and three edgeftriangular faces This makes the a= (= X" =X X+ x0) /4,

scheme applicable to all zone types allowed in linear-finite- ; o (13
element codes, viz., hexahedra, prisms, pyramids, and tetra- a,=(—x%+x1+x2—x3)/4,

hedra. Faces with more than four edges do not admit a bilin-

ear spatial representation, which we want to preserve to az=(xX°—x +x2—x3)/4,

maintain consistency with the finite-element formalism. Such
faces can always be decomposed into triangular and quadiénd Eq.(10) as
lateral “subfaces.”
X—ag=aja+a,B+azap. 14
1. Quadrilateral faces o= at Bt azal (14
The surface containing four given points in space and thérom Eq.(14) it follows immediately that
straight lines connecting them is, of course, not unique. We

make it so by requiring its representation to be of bilinear Da=(a,Xas)- (X—ap),
form in the local surface coordinates. That is,{i}, i
=1,2,3 are Cartesian coordinates we introduce a two- DB=(asxay)- (X—ap), (15)

dimensional (dimensionless coordinate system in a face,
a,B}, such that - - - -
(e} D= (8:X4y)- (X~ o),
Xj=ajotaata,B+ajzab, (10 ...
Lo 2 'S where D=a;-(a,Xaz). Now, from Egs.(13) it can be
where shown thaD =0 if and only if the four nodes of the face are
coplanar{13]. If D#0,
—1l<a,B<1, (11 L .
a=D"Y(ayxag)-(x—ag)=f(x), (16)

the extreme values corresponding to the four nodes that de-
termine the face. In 4,ﬁ) space the face is planar. and B=DY(azxa;)-(x—ay)=g(x), (17
square, and the Cartesian coordinates vary linearly in each
local coordinate when the other is held fixed. In Cartesian
space the edges of the face are straight lines, but the face is,
in general, not planar. In a bilinear finite-element represen.. _ Al
tation the transformatio10) would also be used as an in- Since for all points in the face- = a3, then
terpolant to evaluate numerically the integrals that typically N -

arise in, e.g., a Galerkin formulatiga1]. In that caser and P(x)=f(x)g(x)—h(x)=0, (19

B are referred to as “isoparametric” coordinates. i , i ,

The coefficientsa;; are particular linear combinations of which provides the equation of the face, or, more precisely,

the nodal Cartesian coordinates that can be determined ?)‘e equation of the surface in which the face is embedded. In

aB=D"Ya;xa,) (x—ag)=h(x). (18

substituting the four possible combinations of extreme value is case, I_the ;o-called disopzrlamﬁtric mapping, thS'
of @,B in Eq. (10). Specifically, if the nodes are numbered 16),(17), is linear inx, y, andz while the equation of the

: ; face is nonlinear. The geometry of the surface in which a
0,1,2,3, ding to th lically ordergt?] local _ 2 X ;
ioordina?eco:)rgis;go{n(;n’g)}o:{(e_c;l/c_lcle; 3(/_or1 i; (1]1?0?1 nonplanar face is embedded is discussed in Appendix A.

—1)}, andx¥ is theith Cartesian component of the location _ (;f D szmgzhesf,} or An;\o.rethpractlcaII%/tﬁorfnputatlonall_y,
of nodek, the collection of Eqs(10) for the four nodes for Tol(AA)™F, whereAA is the area of the face ario, is

i=1,2,3, when written in matrix form, can be inverted to 2 small dlmen5|onle§s tolerapce,athe fagéeﬁ;?ctlvely) pla-
obtain thea;; coefficients: nar. Then the vectora, X a,, a, X a; andazxa, are(effec-
: tively) parallel (or antiparallel to the unique face-normal

aio 1 1 1 17 [ x? vectoru, implying that all three of Eqs(15) vanish identi-
1 cally, providing no information about and 8. In that case
iy 11 -1 -1 1 1 X i > N
= ) (12)  [14]one can take cross products of E&4) with a;, a,, and
ai2 41 -1 11 =11 X% 53 to obtain three equations that can be combined to give
a3 1 -1 1 -1 x|3 quadratic equations far and 8 that have the solutions:
Given the Cartesian coordinates of the nodes,(E2).can be 2C 20
.. . - a= )
used to compute the coefficients in the transformation to sur- B+sgn(B)BZ_4AC

face coordinates: Eq10). The equation of the surface in
Cartesian coordinates can then be obtained as foIIowsijLet °G
be the vector whose Cartesian components are B= ,
{ayj,ay;,a3;}. Then Egs(12) can be written F+sgnF)JF?—4EG

(21)
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where A=U-azxa;, B=U-[a;Xa,—(X—ag)Xas)], C 0-(X—ag) X a,
:a()_()_é.)o)X52 and E=l]-§2X§3, F:a[51X52+()_() B:— a‘§1><§2 ! (30)
—ag)Xag)], G=—U-(x—ag)Xa,;. Here the equation of
the face is simply where
®(x)=U-(X—ag) =0, (22) . axa,
U= ———--.
. axa, |ay X ay|
U=s—=—=r, (23 . o
|a; X ay The equation of the face is identical to that of the planar

quadrilateral face, Eq.22), the appropriate changes having

which includes the origin ifj~5.0=0. Note that in this case been made. Note tha-ilx 5_2 vanishes only for a zero-area
the equation of the face is linear, but the isoparametric magface. For triangular faces the equation of the face as well as
Egs.(20),(21), is nonlinear inx. the isoparametric map, Eq&9),(30) is linear inx.

There are two cases with particular symmetry that deserve
special mention. If opposite edges of a planar face are paral-
lel, as, for example, on a regular mesh, one of the vectors
a,x az, agx a, vanishedi.e., ~O(5ro.AA)] if the face is
trapezoidal, and both vanish if the face is a parallelogram
implying that one or both oA, E vanish. Then Eqs(20),
(22) reduce to

B. Face-crossing detection

Given a ray’s position and velocity as it enters a zone, its
exit location and velocity can be determined by substituting
its trajectory in the equation of each face bounding the zone
and solving for the time at which the trajectory intersects the
face. Thus, integration of E@5) gives

C - - 2
— - I o
@=g [aXa]<droA, 24 V(AD=Vo— 5 —(Vn)At, (3D
C
_S |a,X ds|< 810 AA 25 c?
B=F: |82Xag/<drolAA. (25 X(AD) =X+ VoAt =7 —(Vn)(AD)Z, (32)
Cc
The vectora; X a, vanishes only if the face itself has van- .. N . o
ishing area. wherexg, v are the entry position and velocity. Substitution
of Eqg. (32) in Eq. (19 for nonplanar faces or Eq22) for
2. Triangular faces planar faces yields a quartic or quadratic equation, respec-

he simol ) lar f ith iaht ed is ol tively, to be solved forAt. The smallest positive rodtl6]
The simplest triangular face with straight edges is planary, i \yhen substituted back into E€2) yields a position

dit tation in t f surf dinates inher- .
and its representation in terms of surface coordinates inher (At) for which , 3 as calculated from Eqg16),(17), Eqs.

ently simpler than that of quadrilateral faces. If the nodes ar . .

at ig xt piz dimensionleqss surface coordinates can be in 20),(21) or Egs. (29),(30), as appropriate, satisfy the con-
v B straints(11) or (27), is the unique exit time.

troduced[15] such that (11) or (27) q

%= 50+ 51a+ 52,8 (26) C. Snell's Law
_ In order to apply Snell's law as a ray crosses a zonal
with interface the unit vector normal to the interface at the point

of intersection is required. Given the equation of the surface,

0<a,B,a+p<1. (27) ®(x)=0, the unit normal is given by
In the («,B) space the face is a right triangle whose vertices Vo
are at @,8)=(0,0),(0,1),(1,0). Theoefficients in Eq(26) U= —o,
are VO
ay=x°, which is simply evaluated from Eq$19) or (22). To guar-
antee that theutwardpointing normal is obtained, the quan-
a,=x2—x°, (28) ity U-Veyr, With ey given by Eq.(31), is required to be
positive.
4 =xl—x0 As shown in Sec. Il, Snell's law requires that the compo-
2_ .

nent of ray velocity tangent to the interface be preserved,
while the component normal to the surface undergo the dis-
continuous change given by E¢f). If v, =(v-u)u andv,
- (x— 50)><52 =\7—\7l are the normal anq tangentia! components of the
o= —F -, (29 ray velocity, and unprime¢primed quantities denote values
u-a;xap before(aften the transition, then

Taking the cross product @, a, with Eq. (26) gives
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V' =v—(v-U)u+ J(l—né/nc)cz—vfﬂ. (33) d_etermined by the Iingar approximation to the elegtro_n den-
sity, Eq. (1), the magnitude of a ray’s group velocity is al-

If Eq. (6) cannot be satisfied, then the ray reflects specularlyways correct(i.e., consistent with the electron dengityy
virtue of the motion invarian¥?/c?+ ng/n, built into the

v'=v—2(v-U)U. (34)  propagation algorithm via Snell’'s law.
Equationg32) .and(33)' or Eq.(34) provide initial conditions V. POWER DEPOSITION BY INVERSE
for the ray trajectory in the next zone. BREMSSTRAHLUNG
D. Grid entry Because rays are simply curves in space, they carry no

information about radiation intensity or spatial extent trans-

The scheme described in the previous section is guaralyarse to their direction. Their state is completely defined by

teed to work once the ray has entered the computatlonqheir frequency, velocity, and power, the latter two attributes

mesh. Typically, however, the beam origin is located outsid%f which are, in general, spatially dependent. The power of

the grid, necessitating a me_chanlsm for_ determml_ng the entry, electromagnetic wave is depleted as the oscillatory energy
face. Whether or not a particular ray pierces a given boundl-t imparts to electrons is randomized by collisions, the

ary face can_bg_tested by Comp““r‘g Fhe vector triple prOdu%verse-bremsstrahlung process. The rate of energy loss is
of the ray’s initial velocity with the displacement from the given by the well-known formul&19—21]

ray origin of consecutive vertices of the face taken in cyclic
order: Ne
- .. - . Vib= 1~ Vei (36)
Pij = Ve (Xij = Xg) X (Xj j+1— X8), (39 ¢

wherei, j, respectively, index the boundary face and its ver-where

tices, andkg, vg are the ray’s initial position and velocity at 402220 7t n A
the beam source. If alp;’s for a giveni have the same Vei:_( 77) Nec€ MA
T3

Me

(37

algebraic sign the ray penetrates the face; otherwise it does 3
not. In the case of a convex boundary, two such faces will be

found: entry and exit; the nearerxq is the entry face. If the is the electron-ion collision ratf22]. As a ray traverses a
boundary is nonconvex, more than one entry/exit pair mighgone its power decreases with time
be found, but the face nearest the beam source will still con- A
tain the entry point. If the ray happens to come extremely P(At)= J v

. t)=P(0 — | dtyp[x(t 38
close to a node or zone edge, one of thes will be such (AD)=P(0)ex 0 vie X(V)] (38)
that|pij |<SreveAA, whereAA is the area of the face being

tested andz is a few times the machine roundoff error. In with x(t) given by Eq.(32), and At the time required to
that case the criterion would be difficult to interpret and theyrayerse the zone. Becausg is such a strongly nonuniform
ray would better be slightly redirected by rotation through anfnction of position within a zone, care must be taken in
infinitesimal” angle about a random axis. The strategy computing the integral in Eq38). With Eq. (1) for ne[i(t)]

adopted for stepping through the boundary faces will clearly, LS S . )
have a strong influence on the efficiency of the search. Wh”%r;g]gssmllar linear approximation fdre, the integrand be

serial testing of all boundary faces always works, it is inef-

ficient. An approach based on “bounding volumeg«g7,1§| R (1+Ut+RP)?
has been tested and found to greatly reduce the search time. vip[X()]=vo———————, (39
(1+Wt+St)%2
IV. COMPLETE RAY TRAJECTORIES
where
Once a ray has entered the mesh its trajectory is con-
structed by iterating the zone-traversal algorithm described \70.<V*ne>
in Sec. 11l B until it encounters a boundary face. This gener- U= T
ates a piecewise continuous curve that, in general, has a di- &0
rectional discontinuity at each zone interface crossed. Be- - -
cause the error in E432) is O(€%), the composite error after W= Vo (VTe)
N steps iSO(Ne®)~0(e?)~O(N~2). This N~2 scaling is Teo
general, although in certain circumstances a high degree of (40)
symmetry in the density profile can lead to error cancellation c2 (Vne)-(Vne)
at particular pointsgthe test case discussed in Sec. VI B is an R=— T nn.
example of such a profilghat results inN~2 scaling there. Necfeo
In a density field with complicated structure it is possible . R
that errors could add incoherently, leading thl a>? scaling, ge 0_2 (Vng)-(VTe)
but lack of an analytic trajectory for comparison would make 4 N Teo

that difficult to test.
Although the accuracy of the ray trajectory is primarily The quantities
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427\ Y27t nz,oln Ao from pgints.below the mesh er<IX,0<y<Iy,z<0),. in
yozg(—) — (41)  the z direction and followed through the mesh until they
Me Ne  Teo reached a boundary face. Because the spatial variation of the
electron density was linear, Eql) was exactly satisfied,
Neo={Ne)+(VNe)- (Xo— (X)), (42)  implying that there were no density-discontinuities at zone
interfaces. Consequently, Snell’s law produced no discon-
Teo=(Te) +(VTe)- (Xo— (X)), (43 finuous changes in ray direction: the ray paths were exactly

parabolic, and were found to agree with analytic solutions of
and InA, are defined at the entry point. The integral can beEg. (5) to within machine roundoff. The trajectory of a typi-
evaluated in closed form, but the result is not computationcal ray is shown in Fig. 1.
ally simple enough to be useful, nor warranted on accuracy
grounds. A more efficient approach with sufficient accuracy B. Electron-density quadratic trough

is Gaussian quadrature: To check the scaling of trajectory and power-deposition

At ) At No (1+Ut+ Rtiz)z errors with the mesh spacing when the el_ectron densit_y gra-
dtv [X(1)]=vo— 2, w———————— (44)  dientis not constant, a test case was designed for which the
0 2 =1 (1+wg+SE)3? ray equation of motion Eq5) could be solved and the inte-
gral in Eq.(38) evaluated analytically for comparison with
whereNy is the order of the integration scheme, ands the  the numerical results. A “quadratic trough” electron density
ith Gaussian weight. The evaluation times are givertby profile
=(&+1)At/2, with & theith Gaussian abscis$a3]. If the
integrand in Eq(44) were known with infinite precision the
quadrature error would scale a§¥s**. In fact, the trunca-
tion error in Eq.(39) due to linearly approximating, andT,
is O(€), in general, so thall,=2 is acceptable. Then the was laid down on a one-dimensional X1 X N,)-zone uni-
integration error afteN steps will be ~O(Ne®)~0(e?)  form grid with O<x<I,=0.1 cm, Osy=<l,, O0=z=<I,=10
~O(N™?). The weak dependence of Anon T, can be in- cm. The planeg=0 andz=10 cm were critical surfaces,
cluded, if desired, by the substitution Ap=InA(T,)  and n,=nc/2 the electron density at the bottom of the
— In A[To(1+Wt+SB)] [24]. trough, located at,,=5 cm. The edges of thd, zones were
The rate at which energy is deposited in the electrons it Zy=kl,/N,, k=0,1,... N,. The density in zon& was
the zone isP(0)— P(At), which can be used as a source taken to b&ng)y=[Ne(Zy+1) +Ne(Zy)1/2, while the density
term in an electron energy equation. The unattenuated rayyradient in the zone was <V_)ne>k:éz(<ne>k+l
energy density contributes to that of the total laser field,—(n.), ,)/(2Az). (Ghost zones were used to compute

. z—-2,\?
ne(x):nw+(nc_nw)(z ) ) (45)

¢ Zw

which is discussed in Appendix B. (Vo) for k=1N,.)
As a ray propagates along the density channel and across
VI. TEST CASES the density gradient at constanf=vyo=_cy1—ne(zp)/n,,

In order to check the accuracy of the ray-tracing andt oscillates |_nz_b_e_tween qunlng points at=z, and z
=27,—Zo. With initial conditions

power deposition schemes, two test cases were designed 1o
investigate different aspects of the algorithm. The first of

these verifies that in a globally constant electron density gra- x(0)=(X0,020),
dient the ray-tracing scheme is exact regardless of the mesh. R
The second derives the scaling of the trajectory and power- v(0)=(0yvy,0),
deposition errors with mesh granularity in a “quadratic _ _ _
well” electron density trough. the equation of motiort5) with Eq. (45) has the exact solu-
tion
A. Electron-density ramp on a randomized three-dimensional X(1)=Xg,
mesh
In this case anl{XI,x1,)=(0.3x0.3x0.3) cm box was y(t)=vyot,

discretized on a uniform Cartesian grid of>2@< 20 zones.

The grid was then deformed by imposing random three- 2t

dimensional perturbations on all nodéscept those in the Z(t):ZW+(ZO_Zw)C°5< T)

x=0J, and z=0,, plane$ of r.m.s. magnitude~0.25

% 0.3/20 cm(i.e., about 25% of the nominal grid spacing where r=(27/c)(z.—z,)/\1—n,/n. is the period of the
All internal faces of the resulting mesh were nonplanar, angnotion. Upon elimination of

thus required the use of the most complicated level of the

interface-crossing algorithm, Eq&l6)—(19) with Egs. (31), 2y
(32). An electron density profile with uniform density gradi- z(y)=zw+(zo—zw)cos<v—07 :
ent Vn=(5/2)n.(e,+e,) was laid down on the perturbed ’
mesh, which consequently included part of the critical sur-A plot of one wavelength of the motion,<Qy<v,o7=8r,
face x+z=0.4, wherewy(x,z2)=w. Rays were launched is shown superimposed on a contour plot of the electron

(46)
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FIG. 2. One wavelength of the analytic ray trajectory given by
Eq. (46), superimposed on a contour plot of the electron density 10+0 I U S I A i
trough, Eq.(45). A case withN,= 16 is shown, with(n,) indicated ™ o B
by the gray scale. At this scale an overlay of the numerical trajec- 1071 \\ F
tory would be visually indistinguishable from the analytic one. . No (b) -
10»2__ ) N O -__
density trough in Fig. 2. To investigate error scaling, the 7 o B
length of the grid in they direction was chosen to be one 103 "o F
quarter-wavelength of the motid25]: e 1 N B
P - ~ F
104 .. F
> 5 : (o] ) S ° :
Iy:VyOT/4:(7T/2)\/(Zc_ZW) —(Zo—zy) 105+ o \\\ —
i N B
) o ) 106__- 6 ~ . ___
(which, remarkably, is independent of the electron dehnsity 1 B
. . - ~an = =
Thus the analytic traj_ectory. leaves the grid afy; 107 N
=(Xo.,ly,zy). The numerical trajectory that results from ap- 1.0 10.0 100.0 1000.
plying the ray propagation scheme of Secs. Il and Il to the N,

same initial conditions leads to an exit pointlu"

=(Xg,ly,Zex), Which, in general, differs from2?, by an

error 6z that depends on the resolution of the grid. The scal

FIG. 3. Dimensionless errors in the electron-density-trough test
case:(a) Trajectory error at the exit point as a function of the
‘number of zones. The slope of the dashed lind lisg e;/dlog N,

142w

w

ing of this error is shown in Fig. (&), which plots er =—2; (b) Relative error in deposited power as a function of the
=|64/2(zg—z,) as a function ofN, for a ray with xg number of zones. The slope of the dashed lind lisg ep/d log N,
=0.05 cm,z,=8 cm. The observed variation of the error =-2.
with the mesh is consistent wily o N;Z, in agreement with
the error analysis in Sec. IV. The motion invariart/c? i T
+ng/n, [recall Eq.(7)] maintained a constant value of unity f dtv[x(t)]= wa dt
to within machine roundoff. 0 0
To check the power deposition scheme, an electron tem- 20— 2,2 2.t
perature profile was chosen to give a damping rate for which X ( — ) co§(—”
the integral in Eq38) could be evaluated analytically. In c v T
particular, T
=vug

1 nc—nw(

Zo— Zy 2
2 ny

Ze— Zy

(48)

Te(X) =Tyl Ne(X)/N, 123, (47)

wherew,, is the inverse-bremsstrahlung rate at the bottom of
the trough. For the same ray and density profile used to ob-
tain the trajectory-error scaling, and wiily, =10 keV, Eq.

(T, is the temperature at the bottom of the trougihich
makesvi, < n[X(t)], giving [26]



PRE 61 LASER RAY TRACING AND POWER DEPOSITION @ . .. 903

(48) gives Pye=P(0)—P(7/4)=(0.43...)P(0) for the and a different power-deposition formula is used would ap-
total power deposited. The fractional error in the depositedly to charged-particle drivers. The basic method could also
power,ePE|ngg]— ggA/pggp, with pggg] given by Eq.(44), be ea;ﬂy adapted to other types of computational mesh, ei-
is shown in Fig. &). It was observed to scale a¢;2, thgr simpler typgs like as'Fructured hexahedral,'o'r more com-
consistent with the analysis in Sec. V. plicated types like an arbitrary polyhedral. Additional phys-
The trajectory and power deposition errors at subsequerS llkeé ponderomotive effects and resonant absorption could
crossings of the trough bottomt<37/4,5r/4) were also € added without difficulty. A more significant upgrade
checked. While larger in magnitude than thosé=at/4, the would address diffractive effects by quasioptical techniques

scaling was again-N;, 2. [5.,6].
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fective potential. The spatial variation of the electron density _
within a computational zone is modeled with a linear ap- APPENDIX A: GEOMETRY OF QUADRILATERAL
proximation based on the ratio of the zone size to the FACES

density-gradient scale length as a small parameter. This  |n order to more easily visualize the intersection of rays
leads to a parabolic intrazone ray path that includes refracyith a nonplanar quadrilateral face, i.e., one for which the
tive effects and is correct t©(€?). In general, the approxi- uantity D=51~(§2><5 ) is nonvanishing, it is useful to
mation also leads to density discontinuities at zone interface, udy the geometry of eéuch faces in somé detail. The surface
that must be accommodated by application of Snell's 1aw;, \ypich the face is embedded satisfies E). Its intersec-
Zone interfaces may be triangular or quadrilateral. The[ion with a coordinate planex(=const,i=1,2,3) is an un-

Bounded conic section, i.e., a hyperbola or a parabola; the

nar. By assuming a quadrllat_eral fa_ce to have a b|||nef_:1r "®Pantire surface is a hyperbolic paraboloid. To demonstrate this
resentation in terms of two-dimensional surface coordmateqt is sufficient to concentrate on the quadratic termsbinin

an equation for the three-dimensional surface in which it is i i > > = )
embedded is derived. The time and location at which a ra>t,erms of _the relative cpordlnatep,zx—ao, the quadratic
exits a zone are determined by substituting the equation dfart of ® is the quadratic form
motion into the appropriate face equation. The basic zone-
traversal/interface-transition scheme is iterated to generate
the complete ray trajectory, whose error @&(e%). The
amount of power deposited as a ray crosses a zone is com- L
puted by integrating the inverse-bremsstrahlung absorptiowhere the matri>Q is the dyadic product of,xa3/D and
rate along the ray path using Gaussian quadrature to captuggx a, /D, and the vectors; are defined in Eqg(13). The
the structure of the highly nonuniform deposition rateintersection of the surface with any of the coordinate planes
(n2/T3%). The error in the total amount of power deposited p, = const is a curve whose nature is determined bydiss
on the mesh is, agailQ(e?). criminant a function of the coefficients of the quadratic

The propagation-deposition scheme applies directly taerms in®, involving the nonconstant coordinates. For ex-
meshes made up of hexahedra, prisms, pyramids, and tetrample, if p, is constant, the discriminant of the relevant
hedra. Zones with faces of more than four edges would reterms ind®,, viz., Q3+ (Qaa+ Qs paps+ Qaap? is
quire decomposition of such faces into quadrilateral or trian-
gular subfaces, or subdivision of such zones into those of the A1=(Qp3t+ Qgz2)?—4Q,Q33,
four allowable types. o

Test cases were presented to demonstrate (hain a  and similarly forp, and pj:
constant electron-density-gradient the scheme obtains ray

azxXa; -

a,Xaz -
. D .p

D p

=p-Q-p, (A

— 2_
trajectories that are exact to within roundoff on a randomized A2=(Quzt Q)™= 4Q11Qss,
three-dimensional hexahedral mesf2) in a quadratic _ 2
electron-density trough ray trajectories and energy- A3=(Quzt Q20)"~4QuQ2-

deposition rates are obtained whose error scaling(is®),
in agreement with that predicted.

The laser propagation-deposition scheme developed in
this paper has obvious directions for extension. For example, Q=
a much simpler form, in which there is no need for refraction

Now Q” is
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so thatQ;; Q;i = Q;; Q;; , implying
The curve formed by the intersection of the surface with

coordinate plang,=const is a hyperbola i, >0, a pa-
rabola if A,=0; in either case it is unbounded. In terms of s oa=p=-1

the vectorsa; , the discriminant, is

. |apXas| [asxa;
A=\e , -y
k k D D
wheree, is a unit vector in the, direction. Expansion of the
cross products gives o=p=1
~ >\2
€x-as

Thus we have the simple result that if any componerﬁ@f
vanishes, the curve formed by the intersection of the surface
with the corresponding coordinate plane is parabolic; other-
wise it is a hyperbola. Since it is always possible to rigidly
rotate the face(or, equivalently, the coordinate framéo

align 53 with a coordinate axis, there is some coordinate FIG. 4. A nonplanar quadrilateral facemphasized grid lings
system in which the intersection of the surface with the cor-and its embedding hyperbolic paraboloid. Along grid lines either
responding coordinate plane is hyperbolic, and with the otheor 8 is constant. The unit of the Cartesian coordingtey,z} is
two coordinate planes parabolic. In other words, the threeem, while{«,} are dimensionless.

dimensional surface in which the face is embedded is a hy-

perbolic paraboloid27]. For example, ifag is along thep,  face shown is for-7<a,p<1. Note that the grid lines,
axis, with suitable coordinate scaling the equation of the suralong which eitherw or 3 is constant, are straight. The di-
face can be cast in the standard fodns= pl—p§+p§=0- mensmn/less “nonplanarity” parameter_ for the face is
The surface coordinatas and 8 span the entire surface. |DI/AA%?=8.4x10"°. If { were smaller, i.e., the face were
That segment of the surface that is coincident with the quaddore nearly planarD| would be smaller, and the distance
rilateral face under consideration is determined by the conP&tween the upper and lower sheets of the surface, which
dition (11). Thus, although an arbitrary parabolic ray trajec-Scales withD|, would be smaller. Thus, for example, a ray
tory might intersect thesurface as many as four times thatwas approximately straight and parallel to zteis that
[substitution of Eq(32) in Eq. (19) yields a quartic equation Penetrated the face also would cross the lower sheet, the
for the exit timd, only those intersections satisfying the con- distance between intersection points going to zero Yth
straints ona and B8 need be considered as possible exit
points in the face. For faces that are only slightly nonplanar ~ ApPPENDIX B: LASER-FIELD ENERGY DENSITY
(D—0) the distance between surface intersection points can
be quite small, necessitating high accuracy in solving for [n addition to providing a source for electron energy
candidate exit timef28]. For example, it is straightforward transport, the laser-plasma interaction model can also furnish
to show from Eq/(19) that for a ray intersecting such a face @ momentum source by way of ponderomotive effects, which
atx=a, (= a=B=0) and oriented parallel @, x a,, there depend on the Ia_lser_—fleld energy density and its gradient
is another point where the ray intersects the surtacenot ~ 129-30. The contribution of a single ray to the energy den-

- . sity of the laser field in a zone can be computedé&as
the face separated froma, by a distance that scales as =(P)At/AV, whereAt is the time it takes the ray to cross
D/AA, whereAA is the area of the face. Thus, as the facey, s ;one anaV is the zone volume. TakingP) to be given
approaches planarity)(— 0) two intersection points become by the time-averaged power
arbitrarily close. Becaus®¥ « and ﬁﬁ scale asD %, how-
ever, the variation inv and 8 from one intersection point to 1 (At
the other remains finite, and in fact exceeds unity, making (P)= A—f dtP(t)
determination of the true exit point unambiguous as long as tJo
the intersection times are computed with sufficient accuracy.

An example is depicted in Fig. 4, where a quadrilateralwith P(t) given by Eqs(38),(44), one finds, using the trap-
face specified by the nodee’=1{(0,00),(1,00),(1.5,1.5, ezoidal rule, toO[ e(v;pAt) + (vpAt)],
-{),(0,1,0)}, {=0.25, as well as part of the embedding
surfaced(x) =0, is shown. The faceemphasized grid lings o P(0)+P(AD) At
corresponds te- 1= «,B8=<1, while the segment of the sur- R 2 AV’

-4 a=p=-7

(B1)
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Higher-order terms could, of course, be kept if desired bystep[31]: £ =SrEr. The jitter velocityv . of electrons in
using a higher-order integration scheme to evalBe The  the laser electric field is related to the total laser-field energy
advantage of Eq(B1) is that P(0) andP(At) are already density[19] by £ = (1/2)n;m(v3.). A convenient measure
known from the power deposition calculation. The totalof the strength of the laser field is given by the ratio
laser-field energy density in a zodg is obtained by sum-  ((Vesd/Ve)?) =& /NeTe, Wherev, is the electron thermal ve-
ming Eq.(B1) over all rays that visit the zone in a given time locity and T, is the electron temperature.
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