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Laser ray tracing and power deposition on an unstructured three-dimensional grid

Thomas B. Kaiser
Lawrence Livermore National Laboratory, University of California, Livermore, California 94550

~Received 30 June 1999!

A scheme is presented for laser beam evolution and power deposition on three-dimensional unstructured
grids composed of hexahedra, prisms, pyramids, and tetrahedra. The geometrical-optics approximation to the
electromagnetic wave equation is used to follow propagation of a collection of discrete rays used to represent
the beam~s!. Ray trajectory equations are integrated using a method that is second order in time, exact for a
constant electron-density gradient, and capable of dealing with density discontinuities that arise in certain
hydrodynamics formulations. Power deposition by inverse-bremsstrahlung is modeled with a scheme based on
Gaussian quadrature to accommodate a deposition rate whose spatial variation is highly nonuniform. Com-
parisons with analytic results are given for a density ramp in three dimensions, and a ‘‘quadratic-well’’ density
trough in two dimensions.

PACS number~s!: 02.70.2c, 07.05.Tp, 02.60.Cb, 02.60.Lj
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I. INTRODUCTION

The most highly developed energy source used to d
inertial-confinement fusion~ICF! experiments today is lase
light. The current generation of computer codes used
model such experiments typically use three-dimensio
~3D! unstructured grids@1–4# and may employ either finite
element, finite-difference or hybrid representations to so
Eulerian, Lagrangian or arbitrary-Lagrange-Euler@1# forms
of the hydrodynamics equations. Moreover, when finite e
ments are used, they may be discontinuous@1#. This level of
sophistication presents challenges to any scheme use
model the interaction of laser beams with materials pres
in the simulation.

Part of the difficulty associated with three dimensional
is the availability of sufficient computer power, which can
addressed both by choice of hardware implementation~par-
allel architecture, for example! and by the choice of compu
tation and approximation methods. The former will be d
cussed elsewhere, the focus of the present work be
primarily algorithmic. Whatever the hardware choice, a
maining need for computational efficiency and the fact t
over most of the computational domain, and for most I
applications of interest, the medium varies slowly over
laser wavelength, leads one to choose geometrical op
with absorption as an approximate solution of the full wa
equation with damping. This captures most of the phys
effects of interest: refraction and power deposition and e
some ponderomotive effects. Diffractive effects are n
glected, but there is hope of extending the method to incl
them @5,6#.

Given a ray-tracing approach, unstructured grids pos
problem by complicating the determination of where ra
cross computational-zone interfaces, an issue for both
propagation and power deposition. In some formulations
hydrodynamics, for example, discontinuous-finite-eleme
the matter density is discontinuous at zone interfaces, wh
leads to singularities in the effective force governing r
propagation. Proper treatment of these singularities is cru
to accurate modeling of refraction.

In an earlier treatment@7# rotational symmetry of the
PRE 611063-651X/2000/61~1!/895~11!/$15.00
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propagating medium was assumed, and two-dimensio
quadrilateral zones were triangulated to obtain material pr
erties that varied linearly in the radial and axial coordina
within a zone and were continuous across zone interfa
Azimuthal ray motion was discretized by assuming co
stancy of the gradient of the index of refraction during
propagation subtime step, and iterative numerical root fi
ing used to locate interface crossings.

The present work makes no assumptions about symm
of the medium. The faces of the three-dimensional zones
be triangular or quadrilateral and have arbitrary orientati
Rays traverse a zone in a single time step whose lengt
determined analytically, i.e., iteration is not necessary. C
stancy of the effective force governing ray motion within
zone is assumed, but accuracy is controlled by grid res
tion rather than by restricting the time step. No requirem
of continuity of material properties at zone interfaces is i
posed.

In Sec. II the ray equation of motion is given. Inspecti
shows it to be that of a unit-mass particle in the poten
field V5(c2/2)(ne /nc) wherec is the speed of light,ne is
the free-electron number density, andnc the critical density,
at which the plasma frequency is equal to the laser
quency. Thus, ray propagation is completely determined
the electron-density gradient. If the ratio of the zone size
the gradient scale length is adopted as a small parametee,
variation of the electron density within a computational zo
can be represented as

ne~xW !5^ne&1^¹W ne&•~xW2^xW &!1O~e2!, ~1!

where^ & denotes a zone average. A natural approximat
scheme for ray motion within a zone then emerges. In low
order, the density in a zone is constant at its average va
The ray feels no effective force and therefore moves in
straight line. In making the transition to the next zone~where
the average density is, in general, different! the ray experi-
ences ad-function effective force normal to the zone inte
face, which discontinuously changes the component of
velocity normal to the interface, i.e., the transition is go
erned by Snell’s law. To next order the densitygradient is
895 ©2000 The American Physical Society
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896 PRE 61THOMAS B. KAISER
constant within the zone, so the ray feels a constant force
causes it to move along a parabolic trajectory. The transi
to the next zone again obeys Snell’s law. In lowest or
refraction occurs only at zone interfaces, while at seco
order a ray can refract within a zone as well. Extension
higher order is straightforward but becomes computation
expensive and would be necessary only in the presenc
strongly varying density within a zone, in which case me
refinement would probably be more economical.~If the ma-
terial properties were changing on the same scale as
wavelength of light, geometrical optics would be expected
break down anyway.!

In Sec. III the general problem of determining the point
intersection of a ray with a zone face is considered. T
equation of an arbitrary quadrilateral face is derived un
the assumption that it be of bilinear form in the tw
dimensional surface coordinates. The simpler case of a tr
gular face is also considered, and the inverse transforma
giving the surface coordinates in terms of Cartesian coo
nates derived for both cases. Substitution of the ray tra
tory in the face equation determines the crossing time,
substitution of the crossing time back into the face equa
at the point of intersection. The unit vector normal to t
surface at the point of intersection, needed for application
Snell’s law, is obtained from the gradient of the functio
whose level surface defines the face. Finally, a criterion
dependent of the face equation is given for determin
whether or not a ray originating at the beam source p
etrates a given boundary face.

Given a model for the power-absorption rate, it can
integrated along the ray trajectory to determine the rate
which energy is deposited in a zone. In Sec. IV this is do
for the inverse-bremsstrahlung process, a case in whic
strongly nonuniform absorption rate must be accommoda
Knowledge of the total unattenuated ray-energy density
zone provides the energy density in the electromagnetic fi
which gives the local laser field strength paramet
^(vosc/ve)

2&, required for transport coefficients and ponde
motive effects.

A laser deposition package implementing this scheme
been added to ICF modeling codes currently under deve
ment at Lawrence Livermore National Laboratory@2–4#.
Test cases run with the codes to check the accuracy of
trajectories and power deposition are given in Sec. V, an
Sec. VI results are discussed, and possible extensions o
method briefly mentioned. The geometry of nonplanar fa
and computation of the laser-field energy density are trea
in two appendixes.

II. RAY EQUATIONS OF MOTION

In the geometrical optics approximation@9# electromag-
netic wave quantities are written in the form

f5f̂~xW ,t !exp$ iv@S~xW !/c2t#%, ~2!

with f̂ a slowly varying amplitude and the exponential pha
a large quantity. The quantitiesv andc are, respectively, the
light frequency and the speed of light in vacuum. Retent
of the dominant terms when the form~2! is substituted into
the wave equation,@¹W 22(h/c)2]2/]t2#f50, leads to the
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fundamental equation of geometrical optics,u¹W Su25h2,
where h is the index of refraction, assumed to vary on
much longer spatial scale than the wavelength of the lig
We further assume thath(xW ) is constant on the ray-trans
time scale, i.e., the medium is ‘‘frozen’’ during the tim
required for a typical ray to traverse the grid, although it m
evolve from one time step to the next. The spatially dep
dent part of the phase, oreikonal, is related to the local wave
vectorkW by kW5(v/c)¹W S. Wave fronts, surfaces of consta
phase, move at the phase velocity,v/ukW u5c/u¹W Su, while
rays, which trace out curves that are everywhere norma
wave fronts, i.e., parallel to¹W S, can be thought to progres
at the group velocity,vW 5]v/]kW5c¹W S, the velocity at
which energy is transported. The equation of motion of a
can be obtained by differentiating the group velocity w
respect to time@7#:

d2xW

dt2
5

dvW

dt
5c

d¹W S

dt
5c~vW •¹W !~¹W S!5c2~¹W S•¹W !~¹W S!

5
c2

2
¹W ~ u¹W Su2!5¹W S c2

2
h2D . ~3!

The index of refraction, or, equivalently for transparent m
terials, the dielectric function,eD5h2, is a known function
of position for a given material. In a nonrelativistic unma
netized plasma, which for definiteness will be adopted a
model here, it is given by

h2512
vp

2

v2
512

ne

nc
, ~4!

wherevp is the plasma frequency,v is the laser frequency
andnc5(me/4p)(v/e)2 is the critical density, at which the
laser frequency and plasma frequency are equal.~The quan-
tities me and e are the electron mass and charge, resp
tively.! Combining Eq.~4! with Eq. ~3! gives the final form
of the ray equation of motion:

d2xW

dt2
5¹W S 2

c2

2

ne

nc
D . ~5!

Rays move as unit-mass particles in the potentialV
5(c2/2)ne /nc .

Hydrodynamics codes discretize the fundamental eq
tions on meshes of points that define computational no
and zones. Some quantities, typically even moments of
underlying distribution function, are specified in the zon
while others, typically the odd moments, are specified
nodes. The electron density is not usually followed with
evolution equation. Rather it is reconstructed when nee
from other quantities like the mass density, ionization sta
mass number, material fractions, etc. In addition to^ne&, we
also requirê ¹W ne& in each zone@8# in order to integrate Eq.
~5!. To lowest order@in the sense of Eq.~1!# the equation of
motion isd2xW /dt250, so that the ray crosses the zone in
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PRE 61 897LASER RAY TRACING AND POWER DEPOSITION ON . . .
straight line. To next orderd2xW /dt252(c2/2)^¹W ne&/nc , re-
sulting in the parabolic trajectory characteristic of a const
force field.

In the approximation~1! the electron density is not, in
general, continuous across the interface separating two a
cent computational zones. From Eq.~5! it is clear that this
discontinuity appears in the ray equation of motion as a
gularity in the component of the force normal to the inte
face. Thus, in passing through the interface the componen
the ray velocity normal to the interface incurs a discontin
ous change, while the component tangent to the interfac
conserved, i.e., the ray refracts. To compute the effect of
instantaneous acceleration, lets be the distance measure
along the interface normal, andv' the associated compone
of the velocity. Then in this direction,d/dt5v']/]s by defi-
nition, so that the component of Eq.~5! normal to the inter-
face can be written

]

]s S v'
2 1

ne

nc
c2D50⇒Dv'

2 52DS ne

nc
c2D , ~6!

where D( . . . ) represents the change across the interfa
Clearly, for a given value ofv'

2 there is a maximum densit
discontinuity consistent with transmission, viz.,Dne

<(v'
2 /c2)nc . For larger discontinuities Eq.~6! cannot be

satisfied for a transmitted ray. In that case the ray must
main in the initial zone and the only solution of Eq.~6! is
Dne50. Then,Dv'

2 50⇒v'→2v' , i.e., the ray reflects
Note that ray reflection occurs only for sufficiently large de
sity discontinuities, unlike the case for solutions of the f
electromagnetic wave equation, where some reflection wo
take place for any nonvanishing density jump.

Equation~6! is consistent with Snell’s law, which may b
seen by noting that the effective total energy associated
motion governed by Eq.~5! is conserved:

1

2
v21

1

2

ne

nc
c25

1

2
c2. ~7!

That is,

v25S 12
ne

nc
D c2, ~8!

as expected@recall Eq.~4!#. Combination of Eqs.~8! and~6!
verifies that the velocity component tangent to the interf
is conserved, which can be expressed

A12ne /nc sinu5A12ne8/nc sinu8,

or, with substitution from Eq.~4!,

h sinu5h8 sinu8, ~9!

where unprimed~primed! quantities denote values befo
~after! the transition, andu is the angle between the ra
velocity and the interface normal. Equation~9! is the usual
statement of Snell’s law.

Equations~1!, ~3!, and~9! in general, or Eqs.~1!, ~5!, and
~6! when Eq.~4! holds, provide a prescription for propaga
ing rays through an unstructured grid. In lowest order all t
is needed is the average dielectric function or electron d
t
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sity in each computational zone. At this level of descripti
rays are sequences of connected straight-line segments p
tuated by discontinuous changes of direction at each z
interface encountered. Although this extremely simp
scheme can be adequate for highly underdense plas
where refractive effects are small, it can be unaccepta
inaccurate near critical surfaces, wherene'nc . Further-
more, there are certain geometric configurations in whic
fails badly. For example, consider a cylindrically symmet
density field discretized on a Cartesian grid with thez axis
the axis of symmetry, and a ray traveling parallel to thex or
y axis. Although the average gradient is in the radial dire
tion, at each zone interface it is in either thex or y direction,
as is, therefore, the effective force. Since rays refract onl
interfaces they never feel radial forces, and thus will ne
undergo a transverse acceleration, and so will never ref
~although reflection is possible! @10#.

Retaining the average density gradient in the equation
motion overcomes this deficiency. The ray trajectory with
a zone is second order in the time step, and, therefore, in
ently more accurate. Whereas the lowest order trajector
exact only in the uninteresting case of constant density,
second-order trajectory is exact in a material with const
electron-densitygradient, which is a good local approxima
tion given a sufficiently refined mesh. An example, discus
more fully in Sec. VI, is seen in Fig. 1, where a ray is show
propagating across a constant density gradient. If the den
gradient is globally constant, there are no density disco
nuities at zone interfaces, so the trajectories are smooth,
continuous through first derivatives. The extent to whi
¹W ne is not globally constant determines the size of dens
discontinuities, which in turn determines the amount
which rays must bend discontinuously at zone interfaces
compensate for the lack of resolution in the effective forc

III. INTERSECTION OF RAYS WITH ZONE FACES

A. Equations of faces

In order to determine the point at which a ray passes fr
one computational zone to another the equation of the in
face as a surface in three dimensions is required. Definin

FIG. 1. Trajectory of a ray~solid white line! through a random-
ized three-dimensional mesh projected along with the front and
mesh points onto a plane perpendicular to they axis. ~Notice that
the projections of the front and rear faces of each zone are di
ent.! The average electron number density in a zone, which va
from 0 on they axis to (3/2)nc on the linex5z50.3, is indicated
by the gray scale. The critical surface is indicated with a das
white line.



s,

ite
et
ili

c
ad

th
W
a

wo
,

d
d
a
ia
e
en
-
ll

f
d
ue
d

n

to

su
n
t
a

e

ly,
. In
qs.

a
.

l

ive

898 PRE 61THOMAS B. KAISER
zone interface as a surface bounded by straight lines~edges!
that connect nodes~vertices! shared by two adjacent zone
we consider the particular cases of four edges~quadrilateral
faces!, and three edges~triangular faces!. This makes the
scheme applicable to all zone types allowed in linear-fin
element codes, viz., hexahedra, prisms, pyramids, and t
hedra. Faces with more than four edges do not admit a b
ear spatial representation, which we want to preserve
maintain consistency with the finite-element formalism. Su
faces can always be decomposed into triangular and qu
lateral ‘‘subfaces.’’

1. Quadrilateral faces

The surface containing four given points in space and
straight lines connecting them is, of course, not unique.
make it so by requiring its representation to be of biline
form in the local surface coordinates. That is, if$xi%, i
51,2,3 are Cartesian coordinates we introduce a t
dimensional~dimensionless! coordinate system in a face
$a,b%, such that

xi5ai01ai1a1ai2b1ai3ab, ~10!

where

21<a,b<1, ~11!

the extreme values corresponding to the four nodes that
termine the face. In (a,b) space the face is planar an
square, and the Cartesian coordinates vary linearly in e
local coordinate when the other is held fixed. In Cartes
space the edges of the face are straight lines, but the fac
in general, not planar. In a bilinear finite-element repres
tation the transformation~10! would also be used as an in
terpolant to evaluate numerically the integrals that typica
arise in, e.g., a Galerkin formulation@11#. In that casea and
b are referred to as ‘‘isoparametric’’ coordinates.

The coefficientsai j are particular linear combinations o
the nodal Cartesian coordinates that can be determine
substituting the four possible combinations of extreme val
of a,b in Eq. ~10!. Specifically, if the nodes are numbere
$0, 1, 2, 3%, corresponding to the cyclically ordered@12# local
coordinate pairs $(a,b)%5$(21,21),(21,1),(1,1),(1,
21)%, andxi

k is the i th Cartesian component of the locatio
of nodek, the collection of Eqs.~10! for the four nodes for
i 51,2,3, when written in matrix form, can be inverted
obtain theai j coefficients:

S ai0

ai1

ai2

ai3

D 5
1

4 S 1 1 1 1

21 21 1 1

21 1 1 21

1 21 1 21

D S xi
0

xi
1

xi
2

xi
3

D . ~12!

Given the Cartesian coordinates of the nodes, Eq.~12! can be
used to compute the coefficients in the transformation to
face coordinates: Eq.~10!. The equation of the surface i
Cartesian coordinates can then be obtained as follows. LeaW j
be the vector whose Cartesian components
$a1 j ,a2 j ,a3 j%. Then Eqs.~12! can be written
-
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aW 05~xW01xW11xW21xW3!/4,

aW 15~2xW02xW11xW21xW3!/4,
~13!

aW 25~2xW01xW11xW22xW3!/4,

aW 35~xW02xW11xW22xW3!/4,

and Eq.~10! as

xW2aW 05aW 1a1aW 2b1aW 3ab. ~14!

From Eq.~14! it follows immediately that

Da5~aW 23aW 3!•~xW2aW 0!,

Db5~aW 33aW 1!•~xW2aW 0!, ~15!

Dab5~aW 13aW 2!•~xW2aW 0!,

where D[aW 1•(aW 23aW 3). Now, from Eqs. ~13! it can be
shown thatD50 if and only if the four nodes of the face ar
coplanar@13#. If DÞ0,

a5D21~aW 23aW 3!•~xW2aW 0![ f ~xW !, ~16!

b5D21~aW 33aW 1!•~xW2aW 0![g~xW !, ~17!

ab5D21~aW 13aW 2!•~xW2aW 0![h~xW !. ~18!

Since for all points in the facea•b5ab, then

F~xW ![ f ~xW !g~xW !2h~xW !50, ~19!

which provides the equation of the face, or, more precise
the equation of the surface in which the face is embedded
this case, the so-called isoparametric mapping, E
~16!,~17!, is linear inx, y, andz, while the equation of the
face is nonlinear. The geometry of the surface in which
nonplanar face is embedded is discussed in Appendix A

If D vanishes, or more practically computationally,D
<dTOL(DA)3/2, whereDA is the area of the face anddTOL is
a small dimensionless tolerance, the face is~effectively! pla-
nar. Then the vectorsaW 13aW 2 , aW 23aW 3 andaW 33aW 1 are~effec-
tively! parallel ~or antiparallel! to the unique face-norma
vector û, implying that all three of Eqs.~15! vanish identi-
cally, providing no information abouta andb. In that case
@14# one can take cross products of Eq.~14! with aW 1 , aW 2, and
aW 3 to obtain three equations that can be combined to g
quadratic equations fora andb that have the solutions:

a5
2C

B1sgn~B!AB224AC
, ~20!

b5
2G

F1sgn~F !AF224EG
, ~21!



f

a

rv
r

to

m

-

a
he
a
in

e

ar
g
a
ll as

its
ing
one
the

n

ec-

-

nal
int
ce,

-

o-
ed,
dis-

the
s

PRE 61 899LASER RAY TRACING AND POWER DEPOSITION ON . . .
where A5û•aW 33aW 1 , B5û•@aW 13aW 22(xW2aW 0)3aW 3)], C

5û•(xW2aW 0)3aW 2 and E5û•aW 23aW 3 , F5û•@aW 13aW 21(xW

2aW 0)3aW 3)], G52û•(xW2aW 0)3aW 1. Here the equation o
the face is simply

F~xW !5û•~xW2aW 0!50, ~22!

û5
aW 13aW 2

uaW 13aW 2u
, ~23!

which includes the origin ifû•aW 050. Note that in this case
the equation of the face is linear, but the isoparametric m
Eqs.~20!,~21!, is nonlinear inxW .

There are two cases with particular symmetry that dese
special mention. If opposite edges of a planar face are pa
lel, as, for example, on a regular mesh, one of the vec
aW 23aW 3 , aW 33aW 1 vanishes@i.e., ;O(dTOLDA)] if the face is
trapezoidal, and both vanish if the face is a parallelogra
implying that one or both ofA, E vanish. Then Eqs.~20!,
~21! reduce to

a5
C

B
, uaW 33aW 1u<dTOLDA, ~24!

b5
G

F
, uaW 23aW 3u<dTOLDA. ~25!

The vectoraW 13aW 2 vanishes only if the face itself has van
ishing area.

2. Triangular faces

The simplest triangular face with straight edges is plan
and its representation in terms of surface coordinates in
ently simpler than that of quadrilateral faces. If the nodes
at xW0, xW1, xW2, dimensionless surface coordinates can be
troduced@15# such that

xW5aW 01aW 1a1aW 2b ~26!

with

0<a,b,a1b<1. ~27!

In the (a,b) space the face is a right triangle whose vertic
are at (a,b)5(0,0),(0,1),(1,0). Thecoefficients in Eq.~26!
are

aW 05xW0,

aW 15xW22xW0, ~28!

aW 25xW12xW0.

Taking the cross product ofaW 1 , aW 2 with Eq. ~26! gives

a5
û•~xW2aW 0!3aW 2

û•aW 13aW 2

, ~29!
p,

e
al-
rs

,

r,
r-

re
-

s

b52
û•~xW2aW 0!3aW 1

û•aW 13aW 2

, ~30!

where

û5
aW 13aW 2

uaW 13aW 2u
.

The equation of the face is identical to that of the plan
quadrilateral face, Eq.~22!, the appropriate changes havin
been made. Note thataW 13aW 2 vanishes only for a zero-are
face. For triangular faces the equation of the face as we
the isoparametric map, Eqs.~29!,~30! is linear inxW .

B. Face-crossing detection

Given a ray’s position and velocity as it enters a zone,
exit location and velocity can be determined by substitut
its trajectory in the equation of each face bounding the z
and solving for the time at which the trajectory intersects
face. Thus, integration of Eq.~5! gives

vW ~Dt !5vW 02
c2

2nc
^¹W ne&Dt, ~31!

xW~Dt !5xW01vW 0Dt2
c2

4nc
^¹W ne&~Dt !2, ~32!

wherexW0 , vW 0 are the entry position and velocity. Substitutio
of Eq. ~32! in Eq. ~19! for nonplanar faces or Eq.~22! for
planar faces yields a quartic or quadratic equation, resp
tively, to be solved forDt. The smallest positive root@16#
that, when substituted back into Eq.~32! yields a position
xW (Dt) for which a, b as calculated from Eqs.~16!,~17!, Eqs.
~20!,~21! or Eqs. ~29!,~30!, as appropriate, satisfy the con
straints~11! or ~27!, is the unique exit time.

C. Snell’s Law

In order to apply Snell’s law as a ray crosses a zo
interface the unit vector normal to the interface at the po
of intersection is required. Given the equation of the surfa
F(xW )50, the unit normal is given by

û5
¹W F

u¹W Fu
,

which is simply evaluated from Eqs.~19! or ~22!. To guar-
antee that theoutward-pointing normal is obtained, the quan
tity û•vW exit , with vW exit given by Eq.~31!, is required to be
positive.

As shown in Sec. II, Snell’s law requires that the comp
nent of ray velocity tangent to the interface be preserv
while the component normal to the surface undergo the
continuous change given by Eq.~6!. If vW'5(vW •û)û and vW t

5vW 2vW' are the normal and tangential components of
ray velocity, and unprimed~primed! quantities denote value
before~after! the transition, then
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vW 85vW 2~vW •û!û1A~12ne8/nc!c
22v t

2û. ~33!

If Eq. ~6! cannot be satisfied, then the ray reflects specula

vW 85vW 22~vW •û!û. ~34!

Equations~32! and~33! or Eq.~34! provide initial conditions
for the ray trajectory in the next zone.

D. Grid entry

The scheme described in the previous section is gua
teed to work once the ray has entered the computatio
mesh. Typically, however, the beam origin is located outs
the grid, necessitating a mechanism for determining the e
face. Whether or not a particular ray pierces a given bou
ary face can be tested by computing the vector triple prod
of the ray’s initial velocity with the displacement from th
ray origin of consecutive vertices of the face taken in cyc
order:

pi j 5vW B•~xW i j 2xWB!3~xW i , j 112xWB!, ~35!

wherei, j, respectively, index the boundary face and its v
tices, andxWB , vW B are the ray’s initial position and velocity a
the beam source. If allpi j ’s for a given i have the same
algebraic sign the ray penetrates the face; otherwise it d
not. In the case of a convex boundary, two such faces wil
found: entry and exit; the nearer toxWB is the entry face. If the
boundary is nonconvex, more than one entry/exit pair mi
be found, but the face nearest the beam source will still c
tain the entry point. If the ray happens to come extrem
close to a node or zone edge, one of thepi j ’s will be such
that upi j u,dREvBDA, whereDA is the area of the face bein
tested anddRE is a few times the machine roundoff error.
that case the criterion would be difficult to interpret and t
ray would better be slightly redirected by rotation through
‘‘infinitesimal’’ angle about a random axis. The strateg
adopted for stepping through the boundary faces will clea
have a strong influence on the efficiency of the search. W
serial testing of all boundary faces always works, it is in
ficient. An approach based on ‘‘bounding volumes’’@17,18#
has been tested and found to greatly reduce the search

IV. COMPLETE RAY TRAJECTORIES

Once a ray has entered the mesh its trajectory is c
structed by iterating the zone-traversal algorithm descri
in Sec. III B until it encounters a boundary face. This gen
ates a piecewise continuous curve that, in general, has
rectional discontinuity at each zone interface crossed.
cause the error in Eq.~32! is O(e3), the composite error afte
N steps isO(Ne3);O(e2);O(N22). This N22 scaling is
general, although in certain circumstances a high degre
symmetry in the density profile can lead to error cancellat
at particular points~the test case discussed in Sec. VI B is
example of such a profile! that results inN23 scaling there.
In a density field with complicated structure it is possib
that errors could add incoherently, leading to aN25/2 scaling,
but lack of an analytic trajectory for comparison would ma
that difficult to test.

Although the accuracy of the ray trajectory is primar
y:
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determined by the linear approximation to the electron d
sity, Eq. ~1!, the magnitude of a ray’s group velocity is a
ways correct~i.e., consistent with the electron density! by
virtue of the motion invariantv2/c21ne /nc built into the
propagation algorithm via Snell’s law.

V. POWER DEPOSITION BY INVERSE
BREMSSTRAHLUNG

Because rays are simply curves in space, they carry
information about radiation intensity or spatial extent tran
verse to their direction. Their state is completely defined
their frequency, velocity, and power, the latter two attribu
of which are, in general, spatially dependent. The power
an electromagnetic wave is depleted as the oscillatory en
it imparts to electrons is randomized by collisions, t
inverse-bremsstrahlung process. The rate of energy los
given by the well-known formula@19–21#

n ib5
ne

nc
nei , ~36!

where

nei5
4

3 S 2p

me
D 1/2neZe4 ln L

Te
3/2

~37!

is the electron-ion collision rate@22#. As a ray traverses a
zone its power decreases with time

P~Dt !5P~0!expH 2E
0

Dt

dtn ib@xW~ t !#J ~38!

with xW (t) given by Eq.~32!, and Dt the time required to
traverse the zone. Becausen ib is such a strongly nonuniform
function of position within a zone, care must be taken
computing the integral in Eq.~38!. With Eq. ~1! for ne@xW (t)#
and a similar linear approximation forTe , the integrand be-
comes

n ib@xW~ t !#5n0

~11Ut1Rt2!2

~11Wt1St2!3/2
, ~39!

where

U5
vW 0•^¹W ne&

ne0
,

W5
vW 0•^¹W Te&

Te0
,

~40!

R52
c2

4

^¹W ne&•^¹W ne&
ncne0

,

S52
c2

4

^¹W ne&•^¹W Te&
ncTe0

.

The quantities
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n0[
4

3 S 2p

me
D 1/2Ze4

nc

ne0
2 ln L0

Te0
3/2

, ~41!

ne0[^ne&1^¹W ne&•~xW02^xW &!, ~42!

Te0[^Te&1^¹W Te&•~xW02^xW &!, ~43!

and lnL0 are defined at the entry point. The integral can
evaluated in closed form, but the result is not computati
ally simple enough to be useful, nor warranted on accur
grounds. A more efficient approach with sufficient accura
is Gaussian quadrature:

E
0

Dt

dtn ib@xW~ t !#5n0

Dt

2 (
i 51

Ng

wi

~11Uti1Rti
2!2

~11Wti1Sti
2!3/2

, ~44!

whereNg is the order of the integration scheme, andwi is the
i th Gaussian weight. The evaluation times are given bt i
5(j i11)Dt/2, with j i the i th Gaussian abscissa@23#. If the
integrand in Eq.~44! were known with infinite precision the
quadrature error would scale ase2Ng11. In fact, the trunca-
tion error in Eq.~39! due to linearly approximatingne andTe
is O(e3), in general, so thatNg52 is acceptable. Then th
integration error afterN steps will be;O(Ne3);O(e2)
;O(N22). The weak dependence of lnL on Te can be in-
cluded, if desired, by the substitution lnL0[ ln L(Te0)
→ ln L@Te0(11Wt1St2)# @24#.

The rate at which energy is deposited in the electrons
the zone isP(0)2P(Dt), which can be used as a sour
term in an electron energy equation. The unattenuated
energy density contributes to that of the total laser fie
which is discussed in Appendix B.

VI. TEST CASES

In order to check the accuracy of the ray-tracing a
power deposition schemes, two test cases were design
investigate different aspects of the algorithm. The first
these verifies that in a globally constant electron density g
dient the ray-tracing scheme is exact regardless of the m
The second derives the scaling of the trajectory and pow
deposition errors with mesh granularity in a ‘‘quadra
well’’ electron density trough.

A. Electron-density ramp on a randomized three-dimensional
mesh

In this case an (l x3 l y3 l z)5(0.330.330.3) cm box was
discretized on a uniform Cartesian grid of 2031320 zones.
The grid was then deformed by imposing random thr
dimensional perturbations on all nodes~except those in the
x50,l x and z50,l z planes! of r.m.s. magnitude'0.25
30.3/20 cm~i.e., about 25% of the nominal grid spacing!.
All internal faces of the resulting mesh were nonplanar, a
thus required the use of the most complicated level of
interface-crossing algorithm, Eqs.~16!–~19! with Eqs. ~31!,
~32!. An electron density profile with uniform density grad
ent ¹W ne5(5/2)nc(êx1êz) was laid down on the perturbe
mesh, which consequently included part of the critical s
face x1z50.4, wherevp(x,z)5v. Rays were launched
e
-
y

y

in

y-
,

d
to

f
a-
sh.
r-

-

d
e

-

from points below the mesh (0,x, l x ,0,y, l y ,z,0), in
the z direction and followed through the mesh until the
reached a boundary face. Because the spatial variation o
electron density was linear, Eq.~1! was exactly satisfied
implying that there were no density-discontinuities at zo
interfaces. Consequently, Snell’s law produced no disc
tinuous changes in ray direction: the ray paths were exa
parabolic, and were found to agree with analytic solutions
Eq. ~5! to within machine roundoff. The trajectory of a typ
cal ray is shown in Fig. 1.

B. Electron-density quadratic trough

To check the scaling of trajectory and power-deposit
errors with the mesh spacing when the electron density
dient is not constant, a test case was designed for which
ray equation of motion Eq.~5! could be solved and the inte
gral in Eq. ~38! evaluated analytically for comparison wit
the numerical results. A ‘‘quadratic trough’’ electron dens
profile

ne~xW !5nw1~nc2nw!S z2zw

zc2zw
D 2

, ~45!

was laid down on a one-dimensional (1313Nz)-zone uni-
form grid with 0<x< l x50.1 cm, 0<y< l y , 0<z< l z510
cm. The planesz50 andz510 cm were critical surfaces
and nw5nc/2 the electron density at the bottom of th
trough, located atzw55 cm. The edges of theNz zones were
at Zk5klz /Nz , k50,1, . . . ,Nz . The density in zonek was
taken to bê ne&k5@ne(Zk11)1ne(Zk)#/2, while the density
gradient in the zone was ^¹W ne&k5êz(^ne&k11
2^ne&k21)/(2Dz). ~Ghost zones were used to compu

^¹W ne&k for k51,Nz .)
As a ray propagates along the density channel and ac

the density gradient at constantvy5vy05cA12ne(z0)/nc,
it oscillates in z between turning points atz5z0 and z
52zw2z0. With initial conditions

xW~0!5~x0 ,0,z0!,

vW ~0!5~0,vy0 ,0!,

the equation of motion~5! with Eq. ~45! has the exact solu
tion

x~ t !5x0 ,

y~ t !5vy0t,

z~ t !5zw1~z02zw!cosS 2pt

t D ,

where t5(2p/c)(zc2zw)/A12nw /nc is the period of the
motion. Upon elimination oft

z~y!5zw1~z02zw!cosS 2py

vy0t D . ~46!

A plot of one wavelength of the motion, 0<y<vy0t58p,
is shown superimposed on a contour plot of the elect



he
e

ty

p-
th

a

or

ty

em
ic

n

of
ob-

by
sit

jec

test
e

he

902 PRE 61THOMAS B. KAISER
density trough in Fig. 2. To investigate error scaling, t
length of the grid in they direction was chosen to be on
quarter-wavelength of the motion@25#:

l y5vy0t/45~p/2!A~zc2zw!22~z02zw!2

~which, remarkably, is independent of the electron densi!.

Thus the analytic trajectory leaves the grid atxWexit
an

5(x0 ,l y ,zw). The numerical trajectory that results from a
plying the ray propagation scheme of Secs. II and III to

same initial conditions leads to an exit pointxWexit
num

5(x0 ,l y ,zexit), which, in general, differs fromxWexit
an by an

errordz that depends on the resolution of the grid. The sc
ing of this error is shown in Fig. 3~a!, which plots eT

[udzu/2(z02zw) as a function ofNz for a ray with x0

50.05 cm,z058 cm. The observed variation of the err
with the mesh is consistent witheT}Nz

22 , in agreement with
the error analysis in Sec. IV. The motion invariantv2/c2

1ne /nc @recall Eq.~7!# maintained a constant value of uni
to within machine roundoff.

To check the power deposition scheme, an electron t
perature profile was chosen to give a damping rate for wh
the integral in Eq.~38! could be evaluated analytically. I
particular,

Te~xW !5Tw@ne~xW !/nw#2/3, ~47!

(Tw is the temperature at the bottom of the trough! which

makesn ib}ne@xW (t)#, giving @26#

FIG. 2. One wavelength of the analytic ray trajectory given
Eq. ~46!, superimposed on a contour plot of the electron den
trough, Eq.~45!. A case withNz516 is shown, witĥ ne& indicated
by the gray scale. At this scale an overlay of the numerical tra
tory would be visually indistinguishable from the analytic one.
e

l-

-
h

E
0

t/4

dtn ib@xW~ t !#5nwE
0

t/4

dtF11
nc2nw

nw

3S z02zw

zc2zw
D 2

cos2S 2pt

t D G
5nw

t

4 F11
1

2

nc2nw

nw
S z02zw

zc2zw
D 2G ,

~48!

wherenw is the inverse-bremsstrahlung rate at the bottom
the trough. For the same ray and density profile used to
tain the trajectory-error scaling, and withTw510 keV, Eq.

y

-

FIG. 3. Dimensionless errors in the electron-density-trough
case: ~a! Trajectory error at the exit point as a function of th
number of zones. The slope of the dashed line isd log eT /d log Nz

522; ~b! Relative error in deposited power as a function of t
number of zones. The slope of the dashed line isd log eP /d log Nz

522.
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~48! gives Pdep[P(0)2P(t/4)5(0.433 . . . )P(0) for the
total power deposited. The fractional error in the deposi
power,eP[uPdep

num2Pdep
an u/Pdep

an , with Pdep
num given by Eq.~44!,

is shown in Fig. 3~b!. It was observed to scale asNz
22 ,

consistent with the analysis in Sec. V.
The trajectory and power deposition errors at subsequ

crossings of the trough bottom (t53t/4,5t/4) were also
checked. While larger in magnitude than those att5t/4, the
scaling was again;Nz

22 .

VII. SUMMARY AND DISCUSSION

A scheme for modeling propagation and absorption
laser light in a transparent medium with a spatially varyi
index of refraction has been presented. Based on
geometrical-optics limit of the full electromagnetic wav
equation, it follows rays through an unstructured thre
dimensional mesh on which they deposit power absorbed
the inverse-bremsstrahlung process. Ray trajectories are
tained by solving the ray equation of motion, in which t
electron number density is shown to play the role of an
fective potential. The spatial variation of the electron dens
within a computational zone is modeled with a linear a
proximation based on the ratio of the zone size to
density-gradient scale lengthe as a small parameter. Thi
leads to a parabolic intrazone ray path that includes ref
tive effects and is correct toO(e2). In general, the approxi
mation also leads to density discontinuities at zone interfa
that must be accommodated by application of Snell’s la
Zone interfaces may be triangular or quadrilateral. T
former are assumed planar, the latter are, in general, non
nar. By assuming a quadrilateral face to have a bilinear r
resentation in terms of two-dimensional surface coordina
an equation for the three-dimensional surface in which i
embedded is derived. The time and location at which a
exits a zone are determined by substituting the equatio
motion into the appropriate face equation. The basic zo
traversal/interface-transition scheme is iterated to gene
the complete ray trajectory, whose error isO(e2). The
amount of power deposited as a ray crosses a zone is c
puted by integrating the inverse-bremsstrahlung absorp
rate along the ray path using Gaussian quadrature to cap
the structure of the highly nonuniform deposition ra
(}ne

2/Te
3/2). The error in the total amount of power deposit

on the mesh is, again,O(e2).
The propagation-deposition scheme applies directly

meshes made up of hexahedra, prisms, pyramids, and t
hedra. Zones with faces of more than four edges would
quire decomposition of such faces into quadrilateral or tri
gular subfaces, or subdivision of such zones into those of
four allowable types.

Test cases were presented to demonstrate that~1! in a
constant electron-density-gradient the scheme obtains
trajectories that are exact to within roundoff on a randomiz
three-dimensional hexahedral mesh;~2! in a quadratic
electron-density trough ray trajectories and ener
deposition rates are obtained whose error scaling isO(e2),
in agreement with that predicted.

The laser propagation-deposition scheme developed
this paper has obvious directions for extension. For exam
a much simpler form, in which there is no need for refracti
d
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and a different power-deposition formula is used would a
ply to charged-particle drivers. The basic method could a
be easily adapted to other types of computational mesh
ther simpler types like a structured hexahedral, or more co
plicated types like an arbitrary polyhedral. Additional phy
ics like ponderomotive effects and resonant absorption co
be added without difficulty. A more significant upgrad
would address diffractive effects by quasioptical techniqu
@5,6#.
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APPENDIX A: GEOMETRY OF QUADRILATERAL
FACES

In order to more easily visualize the intersection of ra
with a nonplanar quadrilateral face, i.e., one for which t
quantity D5aW 1•(aW 23aW 3) is nonvanishing, it is useful to
study the geometry of such faces in some detail. The sur
in which the face is embedded satisfies Eq.~19!. Its intersec-
tion with a coordinate plane (xi5const, i 51,2,3) is an un-
bounded conic section, i.e., a hyperbola or a parabola;
entire surface is a hyperbolic paraboloid. To demonstrate
it is sufficient to concentrate on the quadratic terms inF. In
terms of the relative coordinates,rW [xW2aW 0, the quadratic
part of F is the quadratic form

F2[S aW 23aW 3

D
•rW D S aW 33aW 1

D
•rW D 5rW •Q•rW , ~A1!

where the matrixQ is the dyadic product ofaW 23aW 3 /D and
aW 33aW 1 /D, and the vectorsaW i are defined in Eqs.~13!. The
intersection of the surface with any of the coordinate pla
r i5const is a curve whose nature is determined by itsdis-
criminant, a function of the coefficients of the quadrat
terms inF2 involving the nonconstant coordinates. For e
ample, if r1 is constant, the discriminant of the releva
terms inF2, viz., Q22r2

21(Q231Q32)r2r31Q33r3
2 is

D15~Q231Q32!
224Q22Q33,

and similarly forr2 andr3:

D25~Q131Q31!
224Q11Q33,

D35~Q121Q21!
224Q11Q22.

Now Qi j is

Qi j 5FaW 23aW 3

D
G

i

FaW 33aW 1

D
G

j
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so thatQi j Qj i 5Qi i Qj j , implying

Dk5~Qi j 2Qj i !
2>0, iÞ j ÞkÞ i .

The curve formed by the intersection of the surface w
coordinate planerk5const is a hyperbola ifDk.0, a pa-
rabola if Dk50; in either case it is unbounded. In terms
the vectorsaW i , the discriminantDk is

Dk5F êk•S aW 23aW 3

D
D 3S aW 33aW 1

D
D G2

,

whereêk is a unit vector in therk direction. Expansion of the
cross products gives

Dk5S êk•aW 3

D
D 2

.

Thus we have the simple result that if any component ofaW 3
vanishes, the curve formed by the intersection of the surf
with the corresponding coordinate plane is parabolic; oth
wise it is a hyperbola. Since it is always possible to rigid
rotate the face~or, equivalently, the coordinate frame! to
align aW 3 with a coordinate axis, there is some coordina
system in which the intersection of the surface with the c
responding coordinate plane is hyperbolic, and with the ot
two coordinate planes parabolic. In other words, the thr
dimensional surface in which the face is embedded is a
perbolic paraboloid@27#. For example, ifaW 3 is along ther1
axis, with suitable coordinate scaling the equation of the s
face can be cast in the standard formF5r12r2

21r3
250.

The surface coordinatesa andb span the entire surface
That segment of the surface that is coincident with the qu
rilateral face under consideration is determined by the c
dition ~11!. Thus, although an arbitrary parabolic ray traje
tory might intersect thesurface as many as four times
@substitution of Eq.~32! in Eq. ~19! yields a quartic equation
for the exit time#, only those intersections satisfying the co
straints ona and b need be considered as possible e
points in the face. For faces that are only slightly nonpla
(D→0) the distance between surface intersection points
be quite small, necessitating high accuracy in solving
candidate exit times@28#. For example, it is straightforward
to show from Eq.~19! that for a ray intersecting such a fac
at xW5aW 0 (⇒a5b50) and oriented parallel toaW 13aW 2, there
is another point where the ray intersects the surface~but not
the face! separated fromaW 0 by a distance that scales a
D/DA, whereDA is the area of the face. Thus, as the fa
approaches planarity (D→0) two intersection points becom
arbitrarily close. Because¹W a and ¹W b scale asD21, how-
ever, the variation ina andb from one intersection point to
the other remains finite, and in fact exceeds unity, mak
determination of the true exit point unambiguous as long
the intersection times are computed with sufficient accura

An example is depicted in Fig. 4, where a quadrilate
face specified by the nodesxWn5$(0,0,0),(1,0,0),(1.5,1.5,
2z),(0,1,0)%, z50.25, as well as part of the embeddin
surfaceF(xW )50, is shown. The face~emphasized grid lines!
corresponds to21<a,b<1, while the segment of the sur
ce
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t
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r

g
s
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l

face shown is for27<a,b<1. Note that the grid lines
along which eithera or b is constant, are straight. The d
mensionless ‘‘nonplanarity’’ parameter for the face
uDu/DA3/258.431023. If z were smaller, i.e., the face wer
more nearly planar,uDu would be smaller, and the distanc
between the upper and lower sheets of the surface, w
scales withuDu, would be smaller. Thus, for example, a ra
that was approximately straight and parallel to thez axis that
penetrated the face also would cross the lower sheet,
distance between intersection points going to zero withuDu.

APPENDIX B: LASER-FIELD ENERGY DENSITY

In addition to providing a source for electron ener
transport, the laser-plasma interaction model can also fur
a momentum source by way of ponderomotive effects, wh
depend on the laser-field energy density and its grad
@29,30#. The contribution of a single ray to the energy de
sity of the laser field in a zone can be computed asER
5^P&Dt/DV, whereDt is the time it takes the ray to cros
the zone andDV is the zone volume. TakinĝP& to be given
by the time-averaged power

^P&5
1

DtE0

Dt

dtP~ t !

with P(t) given by Eqs.~38!,~44!, one finds, using the trap
ezoidal rule, toO@e(n ibDt)1(n ibDt)2#,

ER5
P~0!1P~Dt !

2

Dt

DV
. ~B1!

FIG. 4. A nonplanar quadrilateral face~emphasized grid lines!
and its embedding hyperbolic paraboloid. Along grid lines eithea
or b is constant. The unit of the Cartesian coordinates$x,y,z% is
cm, while $a,b% are dimensionless.
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Higher-order terms could, of course, be kept if desired
using a higher-order integration scheme to evaluate^P&. The
advantage of Eq.~B1! is that P(0) and P(Dt) are already
known from the power deposition calculation. The to
laser-field energy density in a zoneEL is obtained by sum-
ming Eq.~B1! over all rays that visit the zone in a given tim
h
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step@31#: EL5(RER . The jitter velocityvosc of electrons in
the laser electric field is related to the total laser-field ene
density@19# by EL5(1/2)ncme^vosc

2 &. A convenient measure
of the strength of the laser field is given by the ra
^(vosc/ve)

2&5EL /neTe , whereve is the electron thermal ve
locity andTe is the electron temperature.
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